Potential Games

Matoula Petrolia

April 14, 2011

Examples

Potential Games

Potential vs Congestion games

Cournot Competition

- There is more than one firm and all firms produce a homogeneous product.
- Firms do not cooperate.
- Firms have market power, i.e. each firm's output decision affects the good's price.
- The number of firms is fixed.
- Firms compete in quantities, and choose quantities simultaneously.
- The firms are economically rational and act strategically, usually seeking to maximize profit given their competitors' decisions.

Example 1: Cournot Competition

- $n \text{ firms: } 1, 2, \dots, n.$
- Firm *i* chooses a quantity q_i , cost function $c_i(q_i) = cq_i$. Total quality produced: $Q = \sum_{i=1}^n q_i$.
- Inverse demand function (price): F(Q), Q > 0.
- Profit function for firm $i: \Pi_i(q_1, \ldots, q_2) = F(Q)q_i cq_i$.
- Define a function P:

$$P(q_1, q_2, \ldots, q_n) = q_1 q_2 \ldots q_n (F(Q) - c).$$

• For all i, for all $q_{-i} \in \mathbb{R}^{n-1}_+$, for all $q_i, x_i \in \mathbb{R}_+$,

$$\Pi(q_i, q_{-i}) - \Pi(x_i, q_{-i}) > 0$$
 iff $P(q_i, q_{-i}) - P(x_i, q_{-i}) > 0$.

• P is an ordinal potential function.

Example 2: Cournot competition

- Cost functions arbitrarily differentiable $c_i(q_i)$.
- Inverse demand function F(Q) = a bQ, a, b > 0.
- Define a function P*:

$$P^*(q_1,\ldots,q_n) = a \sum_{j=1}^n q_j - b \sum_{j=1}^n q_j^2 - b \sum_{1 \leq i < j \leq n} q_i q_j - \sum_{j=1}^n c_j(q_j).$$

• Then, for all i, for all $q_{-i} \in \mathbb{R}^{n-1}_+$, for all $q_i, x_i \in \mathbb{R}_+$,

$$\Pi(q_i, q_{-i}) - (x_i, q_{-i}) = P^*(q_i, q_{-i}) - P^*(x_i, q_{-i}).$$

• P* is a potential function.

Potential Games

- $\Gamma(u^1, u^2, \dots, u^n)$ a game in strategic form.
- $N = \{1, 2, \dots, n\}$ the set of players.
- Y^i the set of strategies of player i and $Y = Y^1 \times Y^2 \times ... \times Y^n$.
- $u^i: Y \to \mathbb{R}$ the payoff function of player i.

Ordinal Potential

 $P: Y \to \mathbb{R}$ is an **ordinal potential** function if, $\forall i \in N$, $\forall y^{-i} \in Y^{-i}$,

$$u^{i}(y^{-i},x) - u^{i}(y^{-i},z) > 0$$
 iff $P(y^{-i},x) - P(y^{-i},z) > 0$

 $\forall x, z \in Y^i$.

• Let $w = (w^i)_{i \in N}$ be a vector of positive numbers (weights).

w-Potential

 $P: Y \to \mathbb{R}$ is a w-potential function if, $\forall i \in \mathbb{N}, \forall y^{-i} \in Y^{-i}$,

$$u^{i}(y^{-i},x) - u^{i}(y^{-i},z) = w^{i}(P(y^{-i},x) - P(y^{-i},z))$$

$$\forall x, z \in Y^i$$
.

 When not interested in particular weights we say that P is a weighted potential.

Exact Potential

 $P: Y \to \mathbb{R}$ is a **potential** function if it is a w-potential with $w^i = 1$ for every $i \in N$.

Alternatively, $\forall i \in \mathbb{N}, \forall y^{-i} \in Y^{-i}$,

$$u^{i}(y^{-i},x) - u^{i}(y^{-i},z) = P(y^{-i},x) - P(y^{-i},z)$$

 $\forall x, z \in Y^i$.

Example:

The Prisoner's Dilemma game G with

$$G = \left(\begin{array}{cc} (1,1) & (9,0) \\ (0,9) & (6,6) \end{array} \right)$$

admits a potential

$$P = \left(\begin{array}{cc} 4 & 3 \\ 3 & 0 \end{array}\right).$$

- The set of all strategy profiles that maximize the potential P
 is a subset of the equilibria set.
- The potential function is uniquely defined up to an additive constant (i.e. if P₁, P₂ are potentials for the game Γ, then there is a constant c such that P₁(y) − P₂(y) = c, ∀y ∈ Y).
- Thus, the argmax set of the potential does not depend on a particular potential function.
- The argmax set of P can be used to predict equilibrium points, in some cases.

Corollary

Every finite ordinal potential game possesses a pure-strategy equilibrium.

Finite Improvement Property

Path

A path in Y is a sequence $\gamma = (y_0, y_1, \ldots)$ such that $\forall k \geq 1$ there exists a unique player i such that $y_k = (y_{k-1}^{-i}, x)$ for some $x \neq y_{k-1}^{i}$.

Improvement Path

A path γ is an improvement path if $\forall k \geq 1$, $u^i(y_k) > u^i(y_{k-1})$, i is the unique player with the above property at step k.

Finite Improvement Property (FIP)

A game has the FIP if every improvement path is finite.

- Every finite ordinal potential game has the FIP.
- Having the FIP is not equivalent to having an (ordinal) potential.

Generalized Ordinal Potential

 $P: Y \to \mathbb{R}$ is a generalized ordinal potential, if $\forall x, z \in Y^i$,

$$u^{i}(y^{-i},x) - u^{i}(y^{-i},z) > 0 \implies P(y^{-i},x) - P(y^{-i},z) > 0.$$

 $\forall x, z \in Y^i$

• A finite game Γ has the FIP \iff Γ has a generalized ordinal potential.

• Finite path $\gamma = (y_0, y_1, ..., y_N), v = (v^1, v^2, ..., v^n)$. Define:

$$I(\gamma, \nu) = \sum_{k=1}^{n} [\nu^{i_k}(y_k) - \nu^{i_k}(y_{k-1})],$$

where i_k is the unique deviator at step k.

- Closed path: $y_0 = y_N$.
- Simple closed path: $y_l \neq y_k$ for every $0 \leq l \neq k \leq N-1$ and $y_0 = y_N$.
- Length of simple closed path: The number of distinct vertices in it, $I(\gamma)$.

Theorem

 Γ is a game in strategic form. The following are equivalent:

- 1. Γ is a potential game.
- 2. $I(\gamma, u) = 0$ for every finite closed path γ .
- 3. $I(\gamma, u) = 0$ for every finite simple closed path γ .
- 4. $I(\gamma, u) = 0$ for every finite simple closed path γ of length 4.

Proof.

- $(2) \Longrightarrow (3) \Longrightarrow (4)$: obvious.
- (1) \Longrightarrow (2): If P is a potential for Γ and $\gamma = (y_0, y_1, \dots, y_N)$ a closed path, then by the definition of the potential,

$$I(\gamma, u) = I(\gamma, (P, P, \dots, P)) = P(y_N) - P(y_0) = 0.$$

- (2) \Longrightarrow (1): $I(\gamma, u) = 0$ for every closed path γ . Fix a $z \in Y$.
 - For every two paths γ_1 , γ_2 that connect z to a $y \in Y$, $I(\gamma_1, u) = I(\gamma_2, u)$.
 - Indeed, if $\gamma_1=(z,y_1,\ldots,y_N)$, $\gamma_2=(z,z_1,\ldots,z_M)$ and $y_N=z_M=y$, then μ is the closed path

$$\mu = (z, y_1, \dots, y_N, z_{M-1}, \dots, z)$$

and
$$I(\mu, u) = 0 \Rightarrow I(\gamma_1, u) = I(\gamma_2, u)$$
.

- For every $y \in Y$, $\gamma(y)$ is the path connecting z to y.
- Define $P(y) = I(\gamma(y), u), \forall y \in Y$.

- P is a potential for Γ .
- $P(y) = I(\gamma, u)$, for every γ that connects z to y.
- $i \in N$, $y^{-i} \in Y^{-i}$, $a \neq b \in Y^{i}$.
- $\gamma = (z, y_1, \dots, (y^{-i}, a))$ and $\mu = (z, y_1, \dots, (y^{-i}, a), (y^{-i}, b))$.
- Then, we have

$$P(y^{-i}, b) - P(y^{-i}, a) = I(\mu, u) - I(\gamma, u) = u^{i}(y^{-i}, b) - u^{i}(y^{-i}, a).$$

(4)
$$\Longrightarrow$$
 (2): $I(\gamma, u) = 0$ for every γ with $I(\gamma) = 4$.

- If $I(\gamma, u) \neq 0$ for a closed path γ , then $I(\gamma) = N \geq 5$.
- We can assume that $I(\mu, u) = 0$ whenever $I(\mu) < N$.
- $\gamma = (y_0, y_1, \dots, y_N)$ and i(j) the unique deviator at step j: $y_{j+1} = (y_j^{-i(j)}, x(i(j)))$.
- Assume i(0) = 1. Since $y_N = y_0$, $\exists \ 1 \le j \le N-1$: i(j) = 1.
- If i(1) = 1, let $\mu = (y_0, y_2, \dots, y_N)$. Then $I(\mu, u) = I(\gamma, u) \neq 0$ but $I(\mu) < N$. Contradiction! The same holds if i(1) = N 1.
- Thus, $2 \le j \le N 2$.

• $\mu = (y_0, y_1, \dots, y_{j-1}, z_j, y_{i+1}, \dots, y - N)$ where

$$z_j = (y_{j-1}^{-[i(j-1),1]}, y_{j-1}^{i(j-1)}, y_{j+1}^1).$$

• Then,

$$I((y_{j-1}, y_j, y_{j+1}, z_j), u) = 0.$$

- $I(\mu, u) = I(\gamma, u)$ and i(j 1) = 1.
- Continuing recursively we get a contradiction!

Congestion Games

- $N = \{1, 2, \dots, n\}$ the set of players.
- $M = \{1, 2, \dots, m\}$ the set of facilities.
- Σ^i the set of strategies for player i. $A^i \in \Sigma^i$, non-empty set. $\Sigma = \times_{i \in N} \Sigma^i$.
- c_j the vector of payoffs, j ∈ M.
 c_j(k) the payoff to each user of facility j if there are exactly k users.
- $\sigma_j(A) = \sharp \{i \in N : j \in A^i\}$, number of users of facility j.

Theorem

Every congestion game is a potential game.

Proof.

For each $A \in \Sigma$ define

$$P(A) = \sum_{j \in \bigcup_{l=1}^n A^i} \left(\sum_{l=1}^{\sigma_j(A)} c_j(l) \right).$$

P is a potential.

Theorem

Every finite potential game is isomorphic to a congestion game.

thank you!